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Relativistic calculations using Monte Carlo methods: One-electron systems
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Variance minimization and Monte Carlo integration are used to evaluate the four-component Dirac equation
for a number of one-electron atomic and diatomic systems. This combination produces accurate energies, is

relatively simple to implement, and exhibits few of the problems associated with traditional techniques.
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PACS numbds): 02.70.Lq, 03.65.Pm

[. INTRODUCTION zero for an exact eigenfunction, the best trial wave function
. . . an be defined to be that which minimizes the variance in
In a series of earlier papers, we used the varlatlonafm [2,8]

Monte Carlo method to compute the total energy, Aissing was the first to show that variance minimization

could also be applied to relativistic systefif)]. He exam-
(Hy=>, [\pin,i/Wi]/ > [Ww], (1) ined a one-electron atom using the two-component Dirac
i i equation and obtained excellent results. In this paper we ex-
tend this work to the four-component Dirac equation. This
and variance, will allow us to examine both atomic and molecular systems.

) Section Il contains a detailed description of how Monte
2= [(HY;~Ein W) 2W{/w?) / [2 [w?/wi]] ,
I |

Carlo can be used to compute the total energy of a one-

electron atom. Because the exact eigenfunction and eigen-
2) value of this system are known, this calculation provides a

necessary test of our method. In Sec. Ill, we examine the
of several nonrelativistic atomic and molecular systemgliatomic systems i and itsZ=90 analog, Th'"*", using
[1-9]. HereH is the usual nonrelativistic Hamiltoniafi; several nonexact trial wave-function forms. Although the en-
=W ,(x) is the value of the trial wave function at the Monte €9y of both systems has recently been determined using a
Carlo integration pointx,, w,=w(x) is the relative prob- number of method$11-2Q, our Monte Carlo calculations
ability of choosing this point, an&,, is a reference energy provide a gompletely '”depe’_‘de_”‘ _method of evalu_atlng
which is fixed at a value close to the desired state. As in alf1€S€ energies. Unless otherwise indicated, all values in this
Monte Carlo calculations, Eq2) is proportional toc//N, paper are given in atomic units awe-137.036 02.
whereN is the number of integration points aleds a con-

. : Il. ATOMIC CALCULATIONS
stant which depends on the trial wave functj®-9] and on

how one chooses the integration poifits9]. Becausec is Given the four-component Dirac equation
[ V+c? 0 ic ic d)]
icy, ic4x Cdy
d d
U1 0 V+c? (—ic—+c—) —ic— U U
y up | dx “dy dz U, e U, 3
Pllug| - d o d d Vo c? 0 us| |us|’
Uy ICd—Z —IC&—Cd—y C Uy Uy
ic d i d 0 V-—c?
i —IC&'FC@ —ch—z |

the relativistic energy can be computed by

2 [uy (Hpuy (i) +u3 (I Hpuy(i) +uz (i) Hpus(i) +uj (N Hpua(i) 1w,

(Ho)= S Tua(O+ T+ T P+ Tua(h 1w @
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TABLE |. Orbital energies(in a.u) of H,* (Ryg=*=1) computed using three different wave-function
forms. Our results were computed using 4000 integration points.

No. of functions Slate[Eq. (8)] GaussiarfEqg. (9)] Mixed [Eq. (10)]
1 —1.055456-0.003 185 —1.108 468-0.002 989 —1.101419-0.000 987
2 —1.101 064-0.001 167 —1.098 842-0.001 504 —1.103 043-0.000 343
3 —1.100923-0.000 651 —1.099974-0.001 007 —1.102 703-0.000 220
4 —1.099479-0.000 524 —1.102 085-0.000 830 —1.102518-0.000 146
5 —1.102 863 0.000 225 —1.102 555-0.000 097
6 —1.102 62%0.000 180 —1.10247%0.000 071
7 —1.102 60G=0.000 145
8 —1.102 436-0.000 090
and its variance by even when an arbitrary set of parameters is used as a starting
- - - P point. The situation in which the exact trial wave-function
S AL+ A1) 2+ [As(D)]*+[A4(D]*/w; form is able to reproduce the exact eigenfunction is a neces-
o= : : : : . sary test that variance minimization passes.
{2 [ua (D P+ Tua(D P+ Tug(D 12+ [ua(D)[ 77w} 2 y P
S

0 (%) d A (1) =% (%) x) [ll. DIATOMIC CALCULATIONS

Here  uy(i)=uy(X; an i)=uz (X)Hpuy(X; )

—Einug(xSup(xi)pfor p=1,234. lgecausré the ingividual For the 1S, state of a one-electron homonuclear di-

components can be complex, all complex conjugation i&OMIC (V=—Za/|Ra=r|~Zg/[Rg—r[), no exact trial

shown explicitly. wave-function form exists. For this reason we have exam-
For the 1Sy, state of a one-electron atorid € — Z/r), we ined a variety of forms in order to determine what features

choose the trial wave-function form will give the fastest convergence. The first form is

U= Ek: ar yexq - akr)v u,= ; ak[rKeXF( — akrAk) + rgexq - aker)],
UZZO.O,
(6) u,=0.0,
_ ; ()
U=, byrYexp(— ayr)iz/r,
k
Uz= Ek) bi[r AeXp( — eyl a)i(Z—Ra)/T A
= Y — i
Uy Ek: il Yexp( — ayt ) (y+ix)/r. rexp(— agradi (z—Ra)/ral,
Using a set of 4000 integration points, we minimized .
with respect to the adjustable pargmetwszl, by, an_dcl u4=2 Cll T Xexp( — al a) (Y+iX)/1 5
(here we sef;= 1.0 for normalization purposgsThe inte- K
gration pointsx;, and their weightsy;, were chosen “bi- y .
ased as random[5-9] from the importance function exp +rgexp— argi) (Y +iX)/1g],
(—=r/Z). This function is more diffuse than the expected wave
function and so it should adequately sample the space. F@ihere
Z=92 our method yields an energy 6¥4861.197 645 with a
statistical error equal to the machine precision of our com- 2 o o PP S S 2
puter. This result is in excellent agreement with the exact 'A~X TYTH(ZTRY)T, TAEXTHYTH (27807,
value[21,22 and demonstrates that variance minimizationis ~ r3=x?+y?+(z—Rg)?, r3,=x2+y?+(z+ 6,2
able to determine the exact coefficients,
y=—1+(1-2%c?)*?, and whereR,= — R are the positions of the two nuclei on
the z axis. This form was chosen in part because it has the
=2, correct behavior at infinity and at each nucleus. It is the
relativistic representation of a molecular orbital composed of
a;=1, (7) atomic orbitals as described, for example, in Eyring, Walter,
and Kimball[23]. Since the position of each Slate,, can
b,=—1c, be optimized along the axis, a small number of terms

should capture a large percentage of the orbital energy. As
C1=vC, shown in Tables | and I, this is indeed the case.
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TABLE II. Orbital energies(in a.u) of Th,}"%" (Ryg= *+1/90)

In order to combine the best qualities of the two previous

computed using three different wave-function forms. Our resultgrial wave functions, we next tried the form

were computed using 4000 integration points.

Slater Gaussian Mixed
No. of functions [Eq. (8)] [Eqg. (9)] [Eqg. (10)]
1 — 9356+ 35 — 9535+ 26 —9480+10
2 —9154+ 25 —9464+14 —9495+4
3 —9486+9 —9479+8 —9496+ 3
4 —9483+6 —9482+7 —9498+2
5 — 9495+ 2 —9499+1
6 —9498+2 —9498+1
7 —9498+1
8 —9497+1

For our second trial wave-function form, we used a typi-
cal Gaussian-type function,

2 2
u;= Ek: af r xexp(— ayrap) +raexpl—ayrg ],

U2: 00,
9)

Ug= ; b r Xexp(— ayr2)i(z—Rp)/T A
+riexp— akrék)i (z—Rg)/rgl,

Ug= > o lriexp— ey rd)(y+ix)/r a
k

+Friexp — oy r3)(y+ix)/rgl.

This form is much more short ranged than the one in(By.

ui=afriexp—ara) +riexp —arg)]
2 2
+ ; a1 Xexp( — ayr3,) +riexp— ard)],

UZZO.O,
(10
us=Db[rexp(—ara)i(z—Rp)/rp

+riexp—arg)i(z—Rp)/rg]
+ 2 blriexp(— a2 (2—Ra)/T
K

+rgexp(— ayr §)i(z—Rg)/rg],

Ug=clrXexp(—arp)(y+ix)/ra

+riexp—arg)(y+ix)/rg]
+ 2 el kexp(— a2 (Y +iX)/T o
K

+rexp — a5 (y+ix)/rg].

Here a single Slater function is fixed on each atom to provide
the correct asymptotic behavior and a set of floating Gauss-
ians is then arranged symmetrically with respect to each
nucleus to describe the bonding. As shown in Tables | and I,
the results from this form converge faster than either of the
earlier trial wave-function forms.

To do all the optimizations described above, we generated
a set of 4000 integration points from the importance function
exp(—r/Z) and then minimized the variance with respect to

which is an important feature for describing bonding but itall adjustable paramete(y, ., ay, by, ¢, andd,, where
also has the wrong asymptotic behavior. As a result, the corwe seta;=1.0 for normalization purposgsThese param-

vergence is relatively slow as shown in Tables | and II.

eters were then used to evaluate EGsand(2) with a set of

TABLE lll. Comparison of Monte Carlo orbital energié® a.u) and values obtained using other meth-
ods. Our results were computed using the mixed wave-function f&un(10)] and 1 024 000 integration

points.
No. of functions H," (Rag=*1) Thy'"®* (Rag= *+1/90)
1 —1.100 756-0.000 064 —9469.78-0.70
2 —1.103 068-0.000 022 —9495.37-0.26
3 —1.102 78%-0.000 014 —9493.69-0.19
4 —1.102 677-0.000 008 —9497.46:-0.11
5 —1.102 668-0.000 005 —9497.86-0.07
6 —1.102 658-0.000 005 —9497.370.07
Extrapolation —1.102565-0.000011 —9498.98-0.32
Gaussian basigl1] —1.10131 —9496.04
Finite elemen{12] —1.102481 —9476.6
Min/Max [13] —1.102641581
Pert. theory[14] —1.1026416 —9495.939
Finite elemen{15] —1.102641581
Gaussian basigl6] —9504.756 696
Pert. theory[17] —9504.756 7155
Min/Max [18] —9504.7497
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FIG. 3. Extrapolation of our k" energies as a function of the
standard deviation per configuration. All values were computed us-
ing 1024 000 configurations. The two lines denote the upper and

lower bounds of the fit.

FIG. 1. Variance of H" as a function of the input energy. The
variance was obtained from the optimization of a six-term mixed
wave function[Eq. (10)] using 4000 configurations.

1024 000 integration points. This latter step was performed .

in order to insure complete statistical independence with théatter converges from above. The question of whether our
original set of points. In Table Il we list the resulting orbital result is variational is not a simple one. When the variance of
energies and their variances as a function of the number dfip) is greater than the variance of the potential, spurious
basis functions. These values show a rapid decrease in tiainima in the variance can occur when the small compo-
variance as more basis functions are added to the trial wav@ents of the wave function are zero. In such a case the kinetic
function. To obtain an estimate of the energy and varianc&€nergy of the entire system is zero and the expectation value
that this wave-function form would produce with an infinite ©f {Hp) is not bounded. When this occuréip) can be
number of basis functions, we can take these values arfPtimized to almost any energy. When the varianceHi )
extrapolate to zero Monte Carlo error. This procedwhkich  is substantially less than the variance (M), the kinetic

is described in detail in Appendix )Aproduces a value of €nergy coming from the small components plays its proper
(Hp)=—1.102565-0.000 11 for B*. When this same pro- role of canceling the variation in the potential atidp)
cedure is applied to TA"®" we get an extrapolated value of become accurate in the sense that it gives a meamngful value
(Hp)=—9498.98-0.32. Both of these energies are in goodthat can be .extrapolated.to ZEro variance. A more rigorous
agreement with those determined using other methibtls ~ Version of this argument is given in Appendix B.

20] but they are also somewhat higher than the best available | © Verify that our diatomic wave functions have not been

estimates. This suggests that our wave-function form coul@Ptimized to some erroneous state, we have plotted the vari-
still be improved. ance as a function d&;, . If our calculations are converging

One obvious difference between thg’Hand TQ”% cal- foa clear unique representation of the true eigenfunction,
culations is that the former converges from below while the
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FIG. 4. Extrapolation of our TA”®" energies as a function of
FIG. 2. Variance for le"il79+ as a function of the input energy. the standard deviation per configuration. All values were computed
The variance was obtained from the optimization of a six-termusing 1 024 000 configurations. The two lines denote the upper and
mixed wave functiofEq. (10)] using 4000 configurations. lower bounds of the fit.
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then this graph should have single minimum at the true ei~0.000 065 and-9498+1 for Th,*’*". The error on both
genvalue. As Figs. 1 and 2 show, this is indeed the case. Igf these estimates is large because of the small number of
the case of energy-minimization methods, the energy can bgaia points being used to determine the two constants in the
obtained by the selected addition of positive and negativgneay fit. A larger number of basis functions would alleviate
energy states. This often leads to spurious solutions. Algnis problem but with our current wave-function form it is

though such occurrences are thought to be minimized byjficulty to add additional functions because of the presence
using balanced basis sets, we avoid this question altogethgf nymerous local minima. As an alternative we optimized

by not using an energy-based method. the same size wave functions using three different random
number sets. These were then expanded over the same set to
IV. CONCLUSIONS give independent estimates of the relativistic energy. When

these values were fitte@see Figs. 3 and)4the improved

We have described how one-electron relativistic calcula- . i
. . stimates were determined to be1.102 565-0.000 011 for
f he M I hod. B
tions can be performed using the Monte Carlo method )‘f; * and — 9498.97- 0.32 for Th7%".

using the fact that the variance of the relativistic energy must 2
be zero for an eigenfunction, we can optimize the parameters
in a trial wave-function form so as to minimize this quantity. APPENDIX B. (NON)VARIATIONAL NATURE OF
Because this optimization does not directly depend on the THE ENERGY

relativistic energy, our Monte Carlo calculations provide a To understand the behavior of the variance. it is worth-
completely independent method of evaluating atomic, d|-While to look at the individual terms in Eq5). When u,

atomic, and polyatomic SV_SFef.“S- . =0 in Eq.(3), the expression for the small componentis
In most ways the relativistic calculations presented her iven by

are very similar to their nonrelativistic counterparts. For this
reason it should be quite straightforward to determine a num- d
ber of properties from our wave functiof8]. The addition Eu;=[V—c?Juz—ic a7 (B1)
of the Breit interaction and other terms to the Hamiltonian z

(e.g., electric and magnetic fieldshould also be straightfor- \,hose solution can be found by minimizing the sum
ward. The extension of this method to systems with more

than one electron is in progress. ug(xi) d 2
83=2, W) [E—V+cz]u3(xi)+icd—zu1(xi) .
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E—V+c?Jus+i d
[ c“]us |cd—Z

Uz
APPENDIX A: OBTAINING AN ENERGY ESTIMATE BY
EXTRAPOLATION Similar terms can be generated 6y and 5,. Because the

_ 2 . . .
The eigenvalue which solves the Dirac equation is thd®ME=c” dominates this integral, the numerator of 5.
relativistic energy. There are two reasons why the expectacan be simplified to

tion value of the Hamiltonian with a given trial function can 02 q 2

be above or below this value. The first is an error that comes 53%J' =3 c2Us+c2Ugz—ic —uy| d7 (B4)
from using only a limited number of configurations to esti- w dz

mate the expectation value. This quantity, the variance, can

be reduced by using a large number of configurations. Th&"

second error is due to the use of an inexact trial wave func- —id e

tion. In any Monte Carlo calculation the standard deviation U= d_zu1+ 5o (B5)

per configuration(a quantity related to the variancee-
comes zero only when an exact trial wave function is used. . . .
This quantity can be reduced by using a better trial Waveyvheres is a_small guantity which represents all other terms.
function form or possibly by adding additional flexibility to When the size of the small components

the current trial wave function. In our calculations the size of 2

the first error is small relative to the second because of the Ssmal= f —|Vu,|%dr (B6)
large number of configurations used. We were able to esti- 4w

mate the size of the second error by fitting the expectation hat of the |
value of (H) as a function of the standard deviation per is compared to that of the large component

configuration. Because the standard deviation per configura- 2

S ) : usg o d .

tion is zero wher{H) is exact, when we extrapolate our fit to Siarge™ f —|[E=V—Cc?Ju;+ic——uz—ic——uy,
zero this yields an estimate of the eigenvalue of the differ- w dz dx

ential equation. Using a linear fit, this method produced an d 2

estimate for the relativistic energy for,H of —1.102471 +ica/u4 dr (B7)
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2
~f8—|Vu 12d (B8)
qw! ¥R
we see that the small components depen¥ anin the same
way that the large component dependsuwgn In the event
that we have an imperfect solution, the valuesofill cause
u; or Vu; to be as small as possible. The solutiap
=Vu;=0 is ruled out by the denominator in Ec) but the
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solutionsu; =0, uz3~Vu;>0 andu;>0, u3=0 are not. This
means that large values of can generate anomalous solu-
tions. To find values ofo? less than the variance in the
potential energy, there must be a cancellation of tthé
singularity in the potential coming from the gradient of the
small components ;. This is possible only for nonzero
values of the small components, thus orcedrops below
this value the anomalous solution is no longer a problem.
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