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Relativistic calculations using Monte Carlo methods: One-electron systems
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Variance minimization and Monte Carlo integration are used to evaluate the four-component Dirac equation
for a number of one-electron atomic and diatomic systems. This combination produces accurate energies, is
relatively simple to implement, and exhibits few of the problems associated with traditional techniques.
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I. INTRODUCTION

In a series of earlier papers, we used the variatio
Monte Carlo method to compute the total energy,

^H&5(
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@C iHC i /wi #Y (
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2/wi #, ~1!

and variance,
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of several nonrelativistic atomic and molecular syste
@1–9#. Here H is the usual nonrelativistic Hamiltonian,C i
5C t(xi) is the value of the trial wave function at the Mon
Carlo integration point,xi , wi5w(xi) is the relative prob-
ability of choosing this point, andEin is a reference energ
which is fixed at a value close to the desired state. As in
Monte Carlo calculations, Eq.~2! is proportional toc/AN,
whereN is the number of integration points andc is a con-
stant which depends on the trial wave function@5–9# and on
how one chooses the integration points@7,9#. Becausec is
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zero for an exact eigenfunction, the best trial wave funct
can be defined to be that which minimizes the variance
^H& @2,8#.

Aissing was the first to show that variance minimizati
could also be applied to relativistic systems@10#. He exam-
ined a one-electron atom using the two-component Di
equation and obtained excellent results. In this paper we
tend this work to the four-component Dirac equation. Th
will allow us to examine both atomic and molecular system
Section II contains a detailed description of how Mon
Carlo can be used to compute the total energy of a o
electron atom. Because the exact eigenfunction and eig
value of this system are known, this calculation provide
necessary test of our method. In Sec. III, we examine
diatomic systems H2

1 and itsZ590 analog, Th2
1791, using

several nonexact trial wave-function forms. Although the e
ergy of both systems has recently been determined usin
number of methods@11–20#, our Monte Carlo calculations
provide a completely independent method of evaluat
these energies. Unless otherwise indicated, all values in
paper are given in atomic units andc5137.036 02.

II. ATOMIC CALCULATIONS

Given the four-component Dirac equation
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the relativistic energy can be computed by
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TABLE I. Orbital energies~in a.u.! of H2
1 (RAB561) computed using three different wave-functio

forms. Our results were computed using 4000 integration points.

No. of functions Slater@Eq. ~8!# Gaussian@Eq. ~9!# Mixed @Eq. ~10!#

1 21.055 45660.003 185 21.108 46860.002 989 21.101 41960.000 987
2 21.101 06460.001 167 21.098 84260.001 504 21.103 04360.000 343
3 21.100 92360.000 651 21.099 97460.001 007 21.102 70360.000 220
4 21.099 47960.000 524 21.102 08560.000 830 21.102 51860.000 146
5 21.102 86360.000 225 21.102 55560.000 097
6 21.102 62960.000 180 21.102 47960.000 071
7 21.102 60060.000 145
8 21.102 43660.000 090
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Here up( i )5up(xi) and Dp( i )5up* (xi)HDup(xi)
2Einup* (xi)up(xi) for p51,2,3,4. Because the individua
components can be complex, all complex conjugation
shown explicitly.

For the 1S1/2 state of a one-electron atom (V52Z/r ), we
choose the trial wave-function form

u15(
k

akr
gexp~2akr !,

u250.0,
~6!

u35(
k

bkr
gexp~2akr !iz/r ,

u45(
k

ckr
gexp~2akr !~y1 ix !/r .

Using a set of 4000 integration points, we minimized Eq.~5!
with respect to the adjustable parametersg, a1 , b1 , andc1
~here we seta151.0 for normalization purposes!. The inte-
gration points,xi , and their weights,wi , were chosen ‘‘bi-
ased as random’’@5–9# from the importance function exp
(2r/Z). This function is more diffuse than the expected wa
function and so it should adequately sample the space.
Z592 our method yields an energy of24861.197 645 with a
statistical error equal to the machine precision of our co
puter. This result is in excellent agreement with the ex
value@21,22# and demonstrates that variance minimization
able to determine the exact coefficients,

g5211~12Z2/c2!1/2,

a15Z,

a151, ~7!

b152gc,

c15gc,
is

e
or
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t

s

even when an arbitrary set of parameters is used as a sta
point. The situation in which the exact trial wave-functio
form is able to reproduce the exact eigenfunction is a nec
sary test that variance minimization passes.

III. DIATOMIC CALCULATIONS

For the 1S1/2 state of a one-electron homonuclear d
atomic (V52ZA /uRA2r u2ZB /uRB2r u), no exact trial
wave-function form exists. For this reason we have exa
ined a variety of forms in order to determine what featu
will give the fastest convergence. The first form is

u15(
k

ak@r A
gexp~2akr Ak!1r B

gexp~2akr Bk!#,

u250.0,
~8!

u35(
k

bk@r A
gexp~2akr Ak!i ~z2RA!/r A

1r B
gexp~2akr Bk!i ~z2RB!/r B#,

u45(
k

ck@r A
gexp~2akr Ak!~y1 ix !/r A

1r B
gexp~2akr Bk!~y1 ix !/r B#,

where

r A
25x21y21~z2RA!2 , r Ak

2 5x21y21~z2dk!
2 ,

r B
25x21y21~z2RB!2 , r Bk

2 5x21y21~z1dk!
2,

and whereRA52RB are the positions of the two nuclei o
the z axis. This form was chosen in part because it has
correct behavior at infinity and at each nucleus. It is t
relativistic representation of a molecular orbital composed
atomic orbitals as described, for example, in Eyring, Walt
and Kimball@23#. Since the position of each Slater,dk , can
be optimized along thez axis, a small number of term
should capture a large percentage of the orbital energy.
shown in Tables I and II, this is indeed the case.
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For our second trial wave-function form, we used a ty
cal Gaussian-type function,

u15(
k

ak@r A
gexp~2akr Ak

2 !1r B
gexp~2akr Bk

2 !#,

u250.0,
~9!

u35(
k

bk@r A
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2 !i ~z2RA!/r A

1r B
gexp~2akr Bk

2 !i ~z2RB!/r B#,

u45(
k

ck@r A
gexp~2akr Ak

2 !~y1 ix !/r A

1r B
gexp~2akr Bk

2 !~y1 ix !/r B#.

This form is much more short ranged than the one in Eq.~8!,
which is an important feature for describing bonding bu
also has the wrong asymptotic behavior. As a result, the c
vergence is relatively slow as shown in Tables I and II.

TABLE II. Orbital energies~in a.u.! of Th2
1791 (RAB561/90)

computed using three different wave-function forms. Our res
were computed using 4000 integration points.

No. of functions
Slater

@Eq. ~8!#
Gaussian
@Eq. ~9!#

Mixed
@Eq. ~10!#

1 29356635 29535626 29480610
2 29154625 29464614 2949564
3 2948669 2947968 2949663
4 2948366 2948267 2949862
5 2949562 2949961
6 2949862 2949861
7 2949861
8 2949761
-

t
n-

In order to combine the best qualities of the two previo
trial wave functions, we next tried the form

u15a@r A
gexp~2ar A!1r B

gexp~2ar B!#

1(
k
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2 !#,
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~10!
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1(
k
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2 !i ~z2RA!/r A

1r B
gexp~2akr Bk

2 !i ~z2RB!/r B#,

u45c@r A
gexp~2ar A!~y1 ix !/r A

1r B
gexp~2ar B!~y1 ix !/r B#

1(
k

ck@r A
gexp~2akr Ak

2 !~y1 ix !/r A

1r B
gexp~2akr Bk

2 !~y1 ix !/r B#.

Here a single Slater function is fixed on each atom to prov
the correct asymptotic behavior and a set of floating Gau
ians is then arranged symmetrically with respect to e
nucleus to describe the bonding. As shown in Tables I and
the results from this form converge faster than either of
earlier trial wave-function forms.

To do all the optimizations described above, we genera
a set of 4000 integration points from the importance funct
exp(2r/Z) and then minimized the variance with respect
all adjustable parameters~g, ak , ak , bk , ck , anddk , where
we seta151.0 for normalization purposes!. These param-
eters were then used to evaluate Eqs.~1! and~2! with a set of

s

h-
TABLE III. Comparison of Monte Carlo orbital energies~in a.u.! and values obtained using other met
ods. Our results were computed using the mixed wave-function form@Eq. ~10!# and 1 024 000 integration
points.

No. of functions H2
1 (RAB561) Th2

1791 (RAB561/90)

1 21.100 75660.000 064 29469.7860.70
2 21.103 06860.000 022 29495.3760.26
3 21.102 78960.000 014 29493.6960.19
4 21.102 67760.000 008 29497.4660.11
5 21.102 66860.000 005 29497.8660.07
6 21.102 65860.000 005 29497.3760.07
Extrapolation 21.102 56560.000 011 29498.9860.32
Gaussian basis@11# 21.101 31 29496.04
Finite element@12# 21.102 481 29476.6
Min/Max @13# 21.102 641 581
Pert. theory@14# 21.102 641 6 29495.939
Finite element@15# 21.102 641 581
Gaussian basis@16# 29504.756 696
Pert. theory@17# 29504.756 7155
Min/Max @18# 29504.7497
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1 024 000 integration points. This latter step was perform
in order to insure complete statistical independence with
original set of points. In Table III we list the resulting orbit
energies and their variances as a function of the numbe
basis functions. These values show a rapid decrease in
variance as more basis functions are added to the trial w
function. To obtain an estimate of the energy and varia
that this wave-function form would produce with an infini
number of basis functions, we can take these values
extrapolate to zero Monte Carlo error. This procedure~which
is described in detail in Appendix A! produces a value o
^HD&521.102 56560.000 11 for H2

1. When this same pro
cedure is applied to Th2

1791 we get an extrapolated value o
^HD&529498.9860.32. Both of these energies are in go
agreement with those determined using other methods@11–
20# but they are also somewhat higher than the best avail
estimates. This suggests that our wave-function form co
still be improved.

One obvious difference between the H2
1 and Th2

1791 cal-
culations is that the former converges from below while

FIG. 1. Variance of H2
1 as a function of the input energy. Th

variance was obtained from the optimization of a six-term mix
wave function@Eq. ~10!# using 4000 configurations.

FIG. 2. Variance for Th2
1791 as a function of the input energy

The variance was obtained from the optimization of a six-te
mixed wave function@Eq. ~10!# using 4000 configurations.
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latter converges from above. The question of whether o
result is variational is not a simple one. When the variance
^HD& is greater than the variance of the potential, spurio
minima in the variance can occur when the small comp
nents of the wave function are zero. In such a case the kin
energy of the entire system is zero and the expectation va
of ^HD& is not bounded. When this occurs,^HD& can be
optimized to almost any energy. When the variance in^HD&
is substantially less than the variance in^V&, the kinetic
energy coming from the small components plays its prop
role of canceling the variation in the potential and^HD&
become accurate in the sense that it gives a meaningful va
that can be extrapolated to zero variance. A more rigoro
version of this argument is given in Appendix B.

To verify that our diatomic wave functions have not bee
optimized to some erroneous state, we have plotted the v
ance as a function ofEin . If our calculations are converging
to a clear unique representation of the true eigenfuncti

d

FIG. 3. Extrapolation of our H2
1 energies as a function of the

standard deviation per configuration. All values were computed
ing 1 024 000 configurations. The two lines denote the upper a
lower bounds of the fit.

FIG. 4. Extrapolation of our Th2
1791 energies as a function of

the standard deviation per configuration. All values were compu
using 1 024 000 configurations. The two lines denote the upper
lower bounds of the fit.
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then this graph should have single minimum at the true
genvalue. As Figs. 1 and 2 show, this is indeed the case
the case of energy-minimization methods, the energy ca
obtained by the selected addition of positive and nega
energy states. This often leads to spurious solutions.
though such occurrences are thought to be minimized
using balanced basis sets, we avoid this question altoge
by not using an energy-based method.

IV. CONCLUSIONS

We have described how one-electron relativistic calcu
tions can be performed using the Monte Carlo method.
using the fact that the variance of the relativistic energy m
be zero for an eigenfunction, we can optimize the parame
in a trial wave-function form so as to minimize this quantit
Because this optimization does not directly depend on
relativistic energy, our Monte Carlo calculations provide
completely independent method of evaluating atomic,
atomic, and polyatomic systems.

In most ways the relativistic calculations presented h
are very similar to their nonrelativistic counterparts. For t
reason it should be quite straightforward to determine a n
ber of properties from our wave functions@9#. The addition
of the Breit interaction and other terms to the Hamiltoni
~e.g., electric and magnetic fields! should also be straightfor
ward. The extension of this method to systems with m
than one electron is in progress.
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APPENDIX A: OBTAINING AN ENERGY ESTIMATE BY
EXTRAPOLATION

The eigenvalue which solves the Dirac equation is
relativistic energy. There are two reasons why the expe
tion value of the Hamiltonian with a given trial function ca
be above or below this value. The first is an error that com
from using only a limited number of configurations to es
mate the expectation value. This quantity, the variance,
be reduced by using a large number of configurations.
second error is due to the use of an inexact trial wave fu
tion. In any Monte Carlo calculation the standard deviat
per configuration~a quantity related to the variance! be-
comes zero only when an exact trial wave function is us
This quantity can be reduced by using a better trial wa
function form or possibly by adding additional flexibility t
the current trial wave function. In our calculations the size
the first error is small relative to the second because of
large number of configurations used. We were able to e
mate the size of the second error by fitting the expecta
value of ^H& as a function of the standard deviation p
configuration. Because the standard deviation per config
tion is zero when̂H& is exact, when we extrapolate our fit t
zero this yields an estimate of the eigenvalue of the diff
ential equation. Using a linear fit, this method produced
estimate for the relativistic energy for H2

1 of 21.102 471
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60.000 065 and2949861 for Th2
1791. The error on both

of these estimates is large because of the small numbe
data points being used to determine the two constants in
linear fit. A larger number of basis functions would allevia
this problem but with our current wave-function form it
difficulty to add additional functions because of the prese
of numerous local minima. As an alternative we optimiz
the same size wave functions using three different rand
number sets. These were then expanded over the same
give independent estimates of the relativistic energy. Wh
these values were fitted~see Figs. 3 and 4!, the improved
estimates were determined to be21.102 56560.000 011 for
H2

1 and29498.9760.32 for Th2
1791.

APPENDIX B. „NON…VARIATIONAL NATURE OF
THE ENERGY

To understand the behavior of the variance, it is wor
while to look at the individual terms in Eq.~5!. When u2
50 in Eq. ~3!, the expression for the small componentu3 is
given by

Eu35@V2c2#u32 ic
d

dz
u1 ~B1!

whose solution can be found by minimizing the sum

d35(
i

u3
2~xi !

w~xi !
2 U@E2V1c2#u3~xi !1 ic

d

dz
u1~xi !U2

.

~B2!

As the number of configurations goes to infinity, this expre
sion is equivalent to

d35E u3
2

w U@E2V1c2#u31 ic
d

dz
u1U2

dt. ~B3!

Similar terms can be generated ford1 and d4 . Because the
termE5c2 dominates this integral, the numerator of Eq.~5!
can be simplified to

d3'E u3
2

w Uc2u31c2u32 ic
d

dz
u1U2

dt ~B4!

or

u35
2 i

2c

d

dz
u11

«

2c
, ~B5!

where« is a small quantity which represents all other term
When the size of the small components

dsmall5E «2

4w
u¹u1u2dt ~B6!

is compared to that of the large component

d large5E u1
2

w U@E2V2c2#u11 ic
d

dz
u32 ic

d

dx
u4

1 ic
d

u4U2

dt ~B7!

dy
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'E «2

4w
u¹u1u2dt, ~B8!

we see that the small components depend on¹u1 in the same
way that the large component depends onu4 . In the event
that we have an imperfect solution, the value of« will cause
u1 or ¹u1 to be as small as possible. The solutionu1
5¹u150 is ruled out by the denominator in Eq.~5! but the
.

.

.

m

solutionsu150, u3'¹u1.0 andu1.0, u350 are not. This
means that large values ofs2 can generate anomalous sol
tions. To find values ofs2 less than the variance in th
potential energy, there must be a cancellation of ther 21

singularity in the potential coming from the gradient of th
small components ind1. This is possible only for nonzero
values of the small components, thus onces2 drops below
this value the anomalous solution is no longer a problem
ett.
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